nanoionics

- 1. Introduction to nanoionics Elements for Information Technology
- 2. ReRAM Cells in the Framework of Two-Terminal Devices
- 3. Quantum Point Contact Conduction
- 4. Dielectric Breakdown Processes
- 5. Physics and Chemistry of nanoionics Cells
- 6. Electroforming Processes in Metal Oxide Resistive-Switching Cells
- 7. Universal Switching Behaviour
- 8. Quasistatic and Pulse Measuring Techniques
- 9. Unipolar Resistive-Switching Mechanisms
- 10. Valence Change Observed by Nano spectroscopy and Spectro microscopy
- 11. Interface-Type Switching
- 12. Electrochemical Metallization Memories
- 13. Scaling Limits of nanoionics Devices
- 14. Integration Technology and Cell Design
- 15. Reliability Aspects
- 16. Select Device Concepts for Crossbar Arrays
- 17. Bottom-Up Approaches for Resistive Switching Memories
- 18. Switch Application in FPGA
- 19. ReRAM-Based Neuromorphic Computing

Textbooks

- 1. Resistive Switching from Fundamentals of nanoionics Redox Processes to Memristive Device Applications by Daniele Ielmini, Rainer Waser
- 2. Resistive Switching Oxide Materials, Mechanisms, Devices and Operations (Electronic Materials Science Technology) by Jennifer Rupp, Daniele Ielmini and Ilia Valov